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Expressions for the second derivative of Gibbs energy of mixing with respect to composition and/or
the corresponding Flory–Huggins interaction parameter are derived using the Barker–Guggenheim
quasichemical theory. The calculation is performed first for a system of compounds with a homo-
geneous molecular surface, then for a binary mixture of molecules the surface of which consists of
various kinds of contact sites. The result is expressed in terms of “indexes of nonrandomness”, the
factors which characterize deviations of individual types of contact pairs from random mixing at a
given composition. Main attention is paid to a mixture of substances, each of which contains a dif-
ferent type of polar groups and a nonpolar residue which is similar for both components. Translucent
relations are obtained in two limit cases, namely for small deviations from random mixing and for
small attraction between polar and nonpolar groups. The effect of the relative size of the polar groups
and of the affinity to formation of various heterocontacts is illustrated using the limit relations
derived, as well as by means of model calculations.

The probability that two polymers can coexist in a homogeneous phase is very limited.
This is due to very small combinatorial entropy of mixing found in a system of long
chain molecules, displaying low freedom of translational motion. Thus the small tend-
ency to mixing is easily overcome by a small positive enthalpy change.

The miscibility of polymers can be enhanced by introducing polar groups into the
macromolecules in such a way that hydrogen bonding (or another type of specific inter-
action) occurs between the two components of the mixture. Part of the theories describ-
ing this effect treat formation of hydrogen bonds as a chemical process, the
contribution of which is added to the energy term originating from physical (van der
Waals) interactions. A system with hydrogen bonds can be handled as a multicompo-
nent mixture of association species, which are in chemical equilibrium. Indeed, if
proton acceptor and proton donor groups are present simultaneously in a molecule,
chainlike or branched complex structures or even association networks originate. This
is true mainly in polymers and polymer mixtures (Coleman and Painter1–3). Enumera-
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tion and weighting of all possible structures is then a difficult combinatorial problem.
Therefore Veytsman4 proposes to disregard individual structures and to consider the
global equilibrium between hydrogen-bonded group pairs and “unreacted” proton
donor and acceptor groups. This approach is more transparent at the cost of losing the
possibility of expressing correlation between the hydrogen-bonding affinities of two
groups belonging to the same molecule (or to the same complex). Panayiotou and Sanchez5

elaborated Veytsman’s idea in developing their LFAS (lattice-fluid associated solutions)
model, in which the existence of vacancies is also taken into account and thus, besides
specific interaction, the free-volume effects are included.

In presence of polar groups, interactions (e.g. dipole–dipole) also occur which may
exhibit a lower energetic effect than hydrogen bonding but a higher one than the disper-
sive forces. The separation of the “chemical” from the “physical” contribution to the
Gibbs energy of mixing is then questionable. This problem does not appear in the Bar-
ker–Guggenheim theory6 in which all kinds of pair contacts are treated in the same way
irrespective of their Gibbs energy: A quasichemical equilibrium is supposed to exist
between like–unlike contacts (heterocontacts) and corresponding like–like contacts
(homocontacts) for each pair of different molecular contact sites. In accord with a com-
monly respected view, the interaction effects are expressed in terms of surface concen-
trations of molecules and/or their interaction sites. Thus the quasichemical theory is a
good alternative to hydrogen-bonding theories in studying systems with strongly inter-
acting groups. It has been used, e.g., by Kehiaian7 as a basis for construction of his
system of group contributions for small molecule mixtures. Barlow and Paul8 used a
similar procedure for prediction of miscibility of polymer pairs, based on enthalpy of
mixing of model compounds.

Our aim is to use the quasichemical theory to the discussion of the influence exerted
by polar groups (their relative surface extent and their interaction “strength”) on the
phase stability of a mixture of polymers. A convenient criterion of stability is found in
the second derivative of Gibbs energy with respect to composition. This quantity van-
ishes at the spinodal; besides, it governs the extent of concentration fluctuations and the
intensity of radiation scattering. Therefore we focused on the Flory–Huggins interac-
tion parameter, χsc, redefined on the basis of the second derivative mentioned9,10. In
some limit cases only, χsc can be expressed directly in terms of the parameters of the
Barker theory (i.e., relative size of interacting groups and quasichemical equilibrium
constants). Generally, the Flory–Huggins parameter is expressed by means of “indexes
of nonrandomness” of various contact pairs, which are concentration-dependent and
indicate the statistical preference of a given type of pair, compared to the case of ran-
dom mixing. Although the Barker–Guggenheim theory is approximate only, we believe
that the equations derived may be used for a discussion of semiquantitative relations
between χsc, the nonrandomness indexes and the Barker theory parameters.
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GENERAL RELATIONS

The Flory–Huggins expression for the Gibbs energy of mixing can be decomposed into
the athermal or combinatorial part (A) and the residual part (R)

∆GN = ∆GN
A + ∆GN

R (1)

∆GN
A = RT[(φ1/r1) ln φ1 + (φ2/r2) ln φ2] (2)

∆GN
R = RTχφ1φ2  , (3)

where ∆GN and the interaction parameter χ are related to one mole of segments, r1 and
r2 give the numbers of segments in molecules of components 1 and 2, and φ1, φ2 are the
segment or volume fractions. The second derivative of Gibbs energy with respect to
composition is expressed according to Flory and Huggins as

∂2∆GN

∂φ1
2  = RT





1
r1φ1

 + 
1

r2φ2
 − 2χsc




  . (4)

The sign of this quantity is decisive for the thermodynamic stability of a binary mix-
ture. The right-hand side of Eq. (4) represents the well-known de Gennes expression of
the static structure factor in the limit of zero scattering angle. The parameter χsc is
defined by

RTχsc = −(1/2)(∂2∆GN
R/∂φ1

2) (5)

and is identical with χ in Eq. (3) only if it is independent of the composition φ1. The
relation of the two interaction parameters9,10 is described by

χsc = χ + (φ1 − φ2)(∂χ/∂φ1) − (1/2)φ1φ2(∂2χ/∂φ1
2)  . (6)

Our attention will be paid to χsc, as it is relevant in the discussion of phase stability and
in the analysis of light scattering.
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In the Barker theory6 the Gibbs energy of mixing is a sum of the combinatorial term
in Miller–Guggenheim form and an interaction contribution ∆GI resulting from nonran-
dom mixing. The Barker relation can then be expressed as

∆GN = ∆GN
A + ∆GN

A′ + ∆GN
I   . (7)

Here ∆GN
A is given by Eq. (2), ∆GN

A′ is a complement to combinatorial term

∆GN
A′ = (RT/2) ∑ 

i

siφi ln (si / ∑ 
j

sjφj)  , (8)

where the subscripts i, j relate to the components 1 or 2; si is indicative of the molecular
surface-to-volume ratio of the component i:

si = zqi/ri  , (9)

zqi gives the number of contact interaction sites on the molecular surface of i. The
complementary term, Eq. (8), vanishes if s1 = s2.

Our goal is the double differentiation of Eq. (7) with respect to composition. Due to
the general favour enjoyed by the Flory–Huggins equation it will be desirable to pres-
ent the results in form of a parameter like χsc, as a function of composition and of the
Barker parameters. Therefore we define the parameters χI

χI = ∆GN
I /(RTφ1φ2) (10)

and χsc
I

χsc
I  = −(1/2RT)(∂2∆GN

I /∂φ1
2)  . (11)

A complete Gibbs energy expression is then

∂2∆GN/∂φ1
2 = RT[1/(r1φ1) + 1/(r2φ2) − (1/2)(s1 − s2)2/( ∑ 

i

siφi) − 2χsc
I ]  . (12)
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The third term on the right-hand side arises by double differentiation of Eq. (8). From
Eq. (12) we see that if the chains are very long and s1 = s2, then the phase stability
exists at negative values of χsc

I  only.
The Barker interaction term is handled more easily, if related to a unit amount of

contact interaction sites. We introduce

∆Gs
I = ∆GN

I / ∑ 
i

siφi  . (13)

The sum ∑
i

siφi gives the average amount of interaction sites per one segment in the

mixture. As will be shown later, the dependence of ∆Gs
I on composition can be unam-

biguously expressed using the interaction site fraction (or surface fraction), defined by

θ1 = 
s1φ1

∑ 
i

siφi

  . (14)

From Eq. (13) we can obtain

∂2∆GN
I /∂φ1

2 = 〈s〉 . (∂2∆Gs
I/∂θ1

2)  , (15)

where

〈s〉 = 
s1

2s2
2

(∑ 
i

siφi)3
  . (16)

The latter expression is a function of composition unless s1 = s2 = 〈s〉  holds.
Therefore χsc

I  will be calculated using Eq. (17) rather than the definition relation (Eq. (11)):

χsc
I  = − 〈s〉

2RT
 




∂2∆Gs
I

∂2θ1
2




  . (17)

Mixture of Components with a Homogeneous Molecular Surface (Guggenheim
Model)

First, let us turn our attention to a system of molecules, of which each contains one type
of contact interaction sites only. The subscript of a given surface group will thus be
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identical with that of the respective component (1 or 2). We give full treatment of this
simple case in order to illustrate our way of handling more complicated systems.

If a molecule of component i can enter into zqi binary contacts with other molecules
then the following balance equations apply for a binary mixture

2n11 + n12 = zq1n1 (18a)

n12 + 2n22 = zq2n2  , (18b)

where nij(in moles) stands for the amount of contacts between molecules i and j. Ac-
cording to the Guggenheim quasichemical equilibrium theory the frequencies of differ-
ent types of contacts follow the relation

n12
2  = 4η2n11n22  , (19)

where η is constant at given temperature. The expression for the non-athermal part of
the Gibbs energy of mixing is

∆GI/RT = (z/2)[q1n1 ln (n11/n11
∗ ) + q2n2 ln (n22/n22

∗ )]  , (20)

where the asterisk relates to random mixing, i.e., to a hypothetical case with η = 1. We
introduce

yij = 
(1 + δij)nij

z(q1n1 + q2n2)
       (i = 1, 2,   j = 1, 2)  , (21)

where δij is the Kronecker delta. For like–like contacts (i ≡ j), yii is the fraction of i–i
contacts. On the other hand, y12 is half the fraction of 1–2 contacts. The Gibbs energy
per mole of contact sites (see Eq. (13)) is

∆Gs
I = 

∆GI

z(q1n1 + q2n2)
  . (22)

We define yi by the relation
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yii = yi
2    (i = 1, 2)  . (23)

Then we obtain from Eqs (18a) and (18b)

y11 + y12 = θ1 (24a)

y12 + y22 = θ2 (24b)

and from Eq. (19)

y12 = ηy1y2  . (25)

Substituting from (23) and (25) into (24a) and (24b) we have

y1
2 + ηy1y2 = θ1 (26a)

ηy1y2 + y2
2 = θ2 (26b)

and from (20) and (22)

∆Gs
I/RT = θ1 ln (y1/y1

∗ ) + θ2 ln (y2/y2
∗ )  , (27)

where

yi
∗  = θi    (i = 1, 2) (28)

as it follows from Eqs (26a) and (26b) when we put η = 1. From Eqs (26), (27) and (28)
we see that ∆Gs

I/RT is fully determined by the values of η and θ1.
In order to obtain the second derivative of the non-athermal term we start by dif-

ferentiating Eqs (23) and (25); we get
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dyij = yij(d ln yi + d ln yj)   (i, j = 1, 2)  . (29)

Summing and differentiating Eqs (24a) and (24b) and substituting from (29) we obtain

θ1d ln y1 + θ2d ln y2 = 0  . (30)

By double differentiation of Eq. (27) and using Eqs (28) and (30) we get

∂2(∆Gs
I/RT)

∂θ1
2  = 

∂ ln (y1/θ1)
∂θ1

 − 
∂ ln (y2/θ2)

∂θ1
  . (31)

The derivatives on the right-hand side can be obtained from the contact balance. We
differentiate Eqs (24a) and (24b) and substitute from Eq. (30) to obtain

(y11 + θ1) d ln y1 + y12 d ln y2 = dθ1 (32a)

y12 d ln y1 + (y22 + θ2) d ln y2 = dθ2  . (32b)

Equation (32a) can be rearranged to

(y11 + θ1) d ln (y1/θ1) + y12 d ln (y2/θ2) = [−(y11/θ1) + (y12/θ2)] dθ1  . (33)

Now we put

yij = (1 + gij)θiθj   (i, j = 1, 2)  . (34)

The parameters gij describe deviations from random mixing; for η = 1 we have gij
∗  = 0

(see Eq. (20)) for all types of binary contacts. On substitution from Eq. (34) into Eqs
(24a) and (24b) we get

g11θ1 + g12θ2 = 0 (35a)
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g12θ1 + g22θ2 = 0  . (35b)

Using Eqs (34) and (35a) the right-hand side of Eq. (33) can be written as g12 dθ1.
In an analogous way we deal with Eq. (32b). We thus obtain relations

(y11 + θ1)Y1 + y12Y2 = g12 (36a)

y12Y1 + (y22 + θ2)Y2 = −g12 (36b)

with

Yi = 
∂ ln (yi/θi)

∂θ1
  . (37)

Except for θ1 = 0 and θ1 = 1, Eqs (36a) and (36b) can be solved using determinants

Yi = −Di/D0   (i = 1, 2)  , (38)

where

Dk = 








δk0

g12

−g12

 

δk1

y11 + θ1

y12

 

δk2

y12

y22 + θ2








      (k = 0, 1, 2)  . (39)

From Eq. (31) we have

∂2(∆Gs
I/RT)

∂θ1
2  = 

D2 − D1

D0
  . (40)

We eliminate y11 and y12 from Eq. (39) using Eqs (24a) and (24b) and expand the
determinants to get

∂2(∆Gs
I/RT)

∂θ1
2  = 

g12

2θ1θ2 − y12
  . (41)
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We finally arrive at the interaction parameter, Eq. (17)

χsc
I  = −〈s〉

2
 

y12 − θ1θ2

θ1θ2(2θ1θ2 − y12)
 = − 〈s〉

2θ1θ2
 

g12

1 − g12
  . (42)

The index of nonrandomness g12 can be calculated from

g12 = y12/(θ1θ2) − 1  , (43)

where

y12 = 
1 − √1 − 4(1 − η−2)θ1θ2

2(1 − η−2)
  . (44)

The last relation follows from solving Eqs (26a) and (26b).

Mixture of Components with a Heterogeneous Molecular Surface (Barker Model)

Now we acknowledge that the molecules consist of various groups so that their surface
contains various types of contact sites (surface groups), e.g. A, B, R, S... For each type
of surface site a balance relation similar to Eq. (18a) is valid. If c types of contact sites
can be distinguished, we have c(c–1)/2 types of binary contacts between unlike groups
(e.g. A–B) and c types of contacts between like groups (e.g. A–A). The Barker theory
implies that for each pair of dissimilar groups an equation like Eq. (19) holds with a
constant η dependent on the chemical character of interacting groups. The expression
for ∆GI is then a sum of contributions of all kinds of like–like contacts. A given type of
group may be built into molecules of both components but we assume that all groups of
the same kind interact to the same extent. Then the respective constant η is the same
whether the interacting sites belong to component 1 or 2.

Let the molecule of component i contain qKi contact sites of type K (K = A, B, R, S…).
Then the total number of sites per molecule is

qi = ∑ 
K

qKi (45)

and the expression

αKi = qKi/qi (46)
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gives the fraction of contact sites of type K in the surface of molecule i. The surface
fraction of sites K in the whole system is given by

ψK = 
qK1n1 + qK2n2

q1n1 + q2n2
(47)

or

ψK = αK1θ1 + αK2θ2  . (48)

Further we define

yKL = 
(1 + δKL)nKL

z(q1n1 + q2n2)
     (K, L = A, B, R, S…)  , (49)

where nKL is the amount of contacts between groups of types K and L, and

yK = yKK
1/2  . (50)

Then we have a set of c balance equations, to be compared with Eqs (24a) and (24b)

∑ 
L

yKL = ψK (51)

and a set of c(c–1)/2 equilibrium relations

yKL = ηKLyKyL  . (52)

By substitution from Eq. (52), the set (51) transforms into

∑ 
L

ηKLyKyL = ψK  , (53)

where indeed ηKL = 1 for K = L. For the non-athermal part of Gibbs energy we have

1840 Pouchly, Zivny, Sikora:

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



∆Gs
I/RT = ∑ 

L

ψL ln (yL/ψL) − ∑ 
i

θi(Gs
I)i

0/RT  , (54)

where (Gs
I)i

0 refers to pure liquid component i; the respective terms will vanish after
double differentiation with respect to θ1. Again, looking at Eqs (52) and (53), we can
state that ∆Gs

I/RT is fully determined by θ1 at given molecular and interaction par-
ameters. In a way analogous with that used in the case of homogeneous molecular
surface we get

∑ 
L

ψL d ln yL = 0 (55)

and

∂2(∆Gs
I/RT)

∂θ1
2  = ∑ 

L

ψL
′ YL (56)

with

ψL
′  = ∂ψL/∂θ1 = αL1 − αL2 (57)

YL = 
∂ ln (yL/ψL)

∂θ1
  . (58)

Now we differentiate the set (51) in a way used in Eq. (29) and we obtain a set

∑ 
L

yKL d ln yL + ψK d ln yK = dψK  . (59)

On both sides we subtract ∑ 
L

yKL d ln ψL + dψK and on the right-hand side we substitute

yKL = (1 + gKL)ψKψL  . (60)

The set (59) assumes the form

∑ 
L

(yKL + δKLψK)YL = −∑ 
L

gKLψKψL
′   . (61)
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Finally we use the relation

∑ 
L

gKLψL = 0 (62)

and Eqs (48) and (57) to obtain

∑ 
L

(yKL + δKLψK)YL = ∑ 
L

(αK1αL2 − αK2αL1)gKL  . (63)

As K ≡ (A, B, R, S…) the relations (63) represent a set of c equations, which can be
solved for YK’s; substituting the results into Eq. (56) we get

∂2(∆Gs
I/RT)

∂θ1
2  = − 

D
D0

  . (64)

Here D0 is the determinant of a c × c matrix D0 whose elements are

(d0)KL = yKL + δKLψK  .

D is the determinant of a square matrix D

D = 



 
0
G

 
A
D0

 



  , (65)

where A is a row matrix (1 × c) of elements 

AL = αL1 − αL2    (L ≡ A, B, R, S…)

and G is a column matrix (c × 1) of elements

GK = ∑ 
L

(αK1αL2 − αL1αK2)gKL    (K, L ≡ A, B, R, S…)  .

Evidently it holds

χsc
I  = 

〈s〉
2

 
D
D0

  . (66)
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In the following, Eq. (66) will be applied to a special type of systems.

A Mixture of Two Components with a Similar Nonpolar Residue

Let us suppose that the molecules of component 1 consist of polar groups A and a
nonpolar residue R1; the component 2 contains a chemically similar nonpolar residue
R2, but different polar groups B. We then put

αA1 ≡ αA     αB1 ≡ 0     αR1 ≡ 1 − αA (67a)

αA2 ≡ 0     αB2 ≡ αB     αR2 ≡ 1 − αB (67b)

and we have

ψA = αAθ1     ψB = αBθ2     ψR = 1 − (ψA + ψB)  . (68)

The determinant D is, after modification of the last row (column) by addition of two
preceding ones,

D = 












0
αA [αBgAB + (1 − αB)gAR]
−αB [αAgAB + (1 − αA)gBR]

0

  

αA

yAA + ψA

yAB

2ψA

  

−αB

yAB

yBB + ψB

2ψB

  

0
2ψA

2ψB

2












  , (69)

where

gKL = ηKLyKyL/(ψKψL) − 1 (70)

and yA, yB, yR are obtained by numerical solution of the set of equations

yA
2  + ηAByAyB + ηARyAyR = ψA (71a)

ηAByAyB + yB
2  + ηBRyByR = ψB (71b)
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ηARyAyR + ηBRyByR + yR
2  = ψR  . (71c)

Expanding the determinant D and its subdeterminant D0 and substituting into Eq. (66)
we obtain a relationship for the interaction parameter

χsc
I  = −〈s〉P/(2Qθ1θ2ψR)  , (72)

where

P = αAαBgABψR + αA(1 − αB)2gARθ2 + αB(1 − αA)2gBRθ1 − (αAθ2 + αBθ1 − αAαB)S (73a)

Q = 1 − gAB(ψA + ψB) − gAR(ψA + ψR) − gBR(ψB + ψR) + S (73b)

S = gABgARψA + gABgBRψB + gARgBRψR  . (73c)

An alternative form of the relationship can be obtained if the main term in Eq. (54) is
separated into two parts, corresponding to non-random and random mixing

∑ 
L

ψL ln (yL/ψL) = ∑ 
L

ψL ln yL − ∑ 
L

ψL ln ψL (74)

and each part is submitted to double differentiation with respect to composition. The
final result is

χsc
I  = −〈s〉

2
 




(αA − αB)2DAB + αB
2DAR + αA

2 DBR

DABDAR + DABDBR + DARDBR
 − 

αAθ2 + αBθ1 − αAαB

θ1θ2ψR




  , (75)

where

DKL = 2ψKψL − yKL     (K, L ≡ A, B, R)  . (76)
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The second term in square brackets in Eq. (75) represents the limit of the first term for
the hypothetical state of random mixing, where DKL = ψKψL. Equations (72) and (74)
are invalid for θ1 = 0 and θ1 = 1.

The set of Eqs (72) and (73a)–(73c) expresses the interaction parameter in terms of
indexes of nonrandomness gKL. At small deviations from random mixing the S-term can
be neglected in the expression for P, while Q is not far from unity. Then the parameter
χSC

I  decreases linearly with growing gAB, gAR and gBR, i.e., with increasing frequency
of heterocontacts. Indeed, a given gKL is a function of all three η constants; e.g. the
relative frequency of A–B contacts is influenced not only by interaction in A–B pairs,
but also by that in pairs A–R and B–R. We see that the functional dependence of the
Flory–Huggins parameter on ηAB, ηAR and ηBR is rather involved in general case; how-
ever, it can be expressed explicitly in some limit cases which will be studied in the
following sections.

Small Deviations from Random Mixing (Linear Approximation)

Let us define

γKL = ηKL − 1     (K, L = A, B, R) (77)

and consider the case of small γAB, γAR and γBR. Then, ζK = yK – ψK (K = A, B, R) are
also small and, in the first approximation, Eqs (71a)–(71c) can be transformed into a set
of linear equations. We solve them for ζA, ζB and ζR and substitute for y’s into Eq. (70).
In the same approximation we obtain

gAA/2 = −γAB(1 − ψA)ψB − γAR(1 − ψA)ψR + γBRψBψR (78a)

gBB/2 = −γABψA(1 − ψB) + γARψAψR − γBR(1 − ψB)ψR (78b)

gRR/2 = γABψAψB − γARψA(1 − ψR) − γBRψB(1 − ψR) (78c)

and

gAB = γAB(ψR + 2ψAψB) − γAR(1 − 2ψA)ψR − γBR(1 − 2ψB)ψR (79a)
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gAR = −γAB(1 − 2ψA)ψB + γAR(ψB + 2ψAψR) − γBRψB(1 − 2ψR) (79b)

gBR = −γAB(1 − 2ψB)ψA − γARψA(1 − 2ψR) + γBR(ψA + 2ψBψR)  . (79c)

In the further text our consideration will be limited to a class of systems exhibiting
following properties:

1) Polar groups A and B, nonpolar R; specific interaction between A and B. This
means

γAB > 0     γAR < 0     γBR < 0  . (80)

2) Prevailing surface of nonpolar groups in both kinds of molecules, i.e.

αA < 0.5     αB < 0.5  . (81)

Let us first consider the nonrandomness of homocontacts; e.g. the index gAA charac-
terizes the self-aggregation of groups A. From Eq. (78a) we see that this factor de-
creases with increasing constants ηAB and ηAR, as expected; however it grows with
ηBR, as at higher ηBR fewer groups B and R are left for a contact with A, so that the
latter groups prefer to interact among themselves. For our class of systems, gAA and gBB

can assume either sign according to circumstances, but gRR is always positive.
For a discussion of the frequency of heterocontacts at small values of γKL the follow-

ing relation is useful:

gKL = γKL + 
1
2

 (gKK + gLL)  . (82)

For instance, the number of A–B contacts grows with increasing constant ηAB and with
the frequencies of A–A and B–B contacts. The latter depend on ηAR and ηBR; for
example, with increasing ηAR the frequency of A–A contacts diminishes, but gBB in-
creases according to Eqs (78a) and (78b). Therefore the final influence of ηAR on gAB

is ambiguous in general and its sense is determined by the sign of the expression (1 – 2ψA)
in Eq. (79a). However, in our class of systems, the latter expression is always positive
and gAB diminishes with ηAR, and, by analogous reasoning, also with ηBR.
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For our class of systems, all terms on the right-hand sides of Eqs (79a)–(79c) are of
the same sign, and we always have

gAB > 0     gAR < 0     gBR < 0  . (83)

This involves preference of A–B contacts and reluctance to form A–R and B–R con-
tacts in comparison with the random mixing case. The Flory–Huggins parameter is
expressed in a surprisingly simple way in linear approximation:

χsc
I /〈s〉 = −αAαBγAB + (αB − αA)(αAγAR − αBγBR)  . (84)

As expected, the specific interactions between A and B groups result in a negative
contribution to χ. The contributions of the “repulsive” interactions A–R and B–R com-
pensate each other if we have either αA = αB or αAγAR = αBγBR. If αA is different from
αB, but γAR = γBR, the combined contribution of the two interactions is positive. It can
become negative if the group with higher α has a greater tendency to enter into contacts
with R (e.g. if αB > αA and simultaneously ηBR > ηAR). This change of sign is the easier
the smaller the relative difference of the α’s is. In general, it is apparent that the dis-
parity in the surface fractions of polar groups A and B affects the value of the γ-para-
meter more strongly than the difference in their interaction with the nonpolar residues.

Small Deviations from Random Mixing (Quadratic Approximation)

Starting from the linear approximation we can arrive at a quadratic expansion of the
interaction parameter χ. For this purpose, we express the enthalpy of the mixture per
mole of surface sites in terms of contributions of individual kinds of heterocontacts

Hs = hAByAB + hARyAR + hBRyBR  , (85)

where hKL is the enthalpy of a contact K–L related to that of respective homocontacts;
if τ = 1/RT, we have

hKL = −




∂ ln ηKL

∂τ



     (K, L ≡ A, B, R)  . (86)
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We express the y’s in Eq. (85) in terms of linear expansions with respect to γAB, γAR and
γBR and we calculate the interaction Gibbs energy on integrating Hs according to the
formula

Gs
I = ∫ 

0

τ

Hs dτ  . (87)

On performing the integration we use formulae valid for small γ’s

∫ 
0

τ

hKL dτ = −γKL + γKL
2 /2 (88a)

∫ 
0

τ

(hKLγK′L′ + hK′L′γKL) dτ = −γKLγK′L′  . (88b)

The resulting expression for Gs
I is subject to double differentiation with respect to

composition and a rather complex equation for χsc
I  is obtained. It becomes much sim-

pler if we put θ1 = θ2 = 0.5 and αA = αB; therefore we give a linear expansion in the
vicinity of this point:

χsc
I /〈s〉  = M0 + M1(θ2 − θ1) + M2(αB − αA) (89)

with

M0 = α2[−γAB + 
1
2
α(1 − α)γAB

2  + (1 − α)2γAB(γAR + γBR)] + 

+ 
1
2
α2(1 − α)(1 − 2α)(γAR − γBR)2 (89a)

M1 = 3α3(1 − α)γAB(γAR − γBR) (89b)

M2 = α(γAR − γBR)



1 + 

α2

2
 γAB − 

1
2

[1 − 4α(1 − α)](γAR + γBR)




  , (89c)

where we might put α = (αA + αB)/2.
The two terms of Eq. (84) reappear approximately in expressions for M0 and M2 as

first terms. We may remember that according to Eq. (84) the interaction parameter is
independent of composition, so that M1 contains no term linear in γ. From (89a) we see
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that in our class of systems the change of χ with γAB slows down with increasing γAB;
on the other hand, the effect of A–B interaction is amplified by an indirect influence of
the interactions A–R and B–R. We also find the missing contribution of the diference
ηAR – ηBR; this term is positive and is not bound to a disparity of the α values. The
difference of ηAR from ηBR is essential for the appearance of the M1 and M2 terms,
which indeed change their signs at θ2 = 0.5 and αA = αB.

Very Small Attraction Between Polar and Nonpolar Groups

The hypothetical case of

ηAR = 0     ηBR = 0     ηAB = 1 (90)

can be described by simple analytical expressions. On substituting from Eq. (90) into
Eqs (71a)–(71c), the resulting equations can be solved to obtain

yAA = ψA
2 /ψS     yAB = ψAψB/ψS     yBB = ψB

2 /ψS (91a)

yAR = 0     yBR = 0     yRR = ψR (91b)

with

ψS = ψA + ψB = 1 − ψR  . (92)

We see that the frequencies of pairs A–A, A–B and B–B are in the same relative
proportions as in the case of random mixing, but they are higher by a factor (ψA + ψB)–1

due to the fact that no pairs A–R and B–R can originate. For the indexes of nonrandom-
ness we have

gAA = gAB = gBB = ψR/ψS (93a)

gAR = gBR = −1     gRR = ψS/ψR (93b)

and the interaction parameter is
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χsc
I /〈s〉 = (αA − αB)2/(4ψRψS)  . (94)

As expected χsc
I  is positive in this case and results from unequal fractions of polar

contact sites in molecules of diferent kind.
If the quasiequilibrium constants are not too much different from the set of values

ηAR = 0; ηBR = 0; ηAB = 1, a linear expansion can be performed in a similar way as in
the case of small deviations from universal random mixing. Compared to the latter
case, the expressions for the nonrandomness indexes contain essentially the same quali-
tative information concerning the dependences of g’s on η’s in our class of systems.
Therefore we give the equation for the interaction parameter only:

χsc
I /〈s〉 = 

(αA − αB)2

4ψRψS
 + 

(αAαB)2

ψS
3  (1 − ηAB) + 

+ 
αB − αA

2ψR
3/2ψS

5/2 



αAαB(ηAR − ηBR)ψR − 

αB − αA

4
 (ηARψA + ηBRψB)




  . (95)

The first term corresponds to the limit equation (94). It may be useful to compare the
other terms with the respective terms in Eq. (84), valid for small δKL. Those in Eq. (95)
are more involved, but we can see that the interaction A–B contributes in a similar way
in both cases, and that again, the interactions A–R and B–R manifest themselves only
if αA is different from αB, no matter whether ηAR equals ηBR or not. Indeed, unlike in
Eq. (84), all contributing terms are composition-dependent.

DISCUSSION

The relations derived will be illustrated by means of simple models. Let us first con-
sider a mixture of components the molecules of which display the same surface frac-
tions of polar groups and the same parameters of polar–nonpolar interaction (αA = αB;
ηAR = ηBR). If we have θ1 = 0.5, the system is symmetrical, i.e. components 1 and 2 are
interchangeable. Then gAA = gBB, gAR = gBR holds. The indices of nonrandomness are
shown in dependence on the quasiequilibrium constants in Figs 1 and 2a. We see from
Fig. 1 that gAR becomes negative and decreases if ηAR diminishes (direct influence) or
if ηAB increases (competition effect). The parameter gRR shows opposite behaviour. If
ηAB = 1, then gAA, gBB and gAB obey the same curve (curve 1 in Fig. 2a). With growing
ηAB the index gAB increases, while gAA and gBB decrease, so that they can assume nega-
tive values for large ηAB. All three indexes in Fig. 2a increase if ηAR and ηBR decrease,
i.e. with diminishing competition of A–R and B–R contacts. The Flory–Huggins inter-
action parameter (full curves in Fig. 3a) decreases with ηAB and grows with ηAR. On
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passing from ηAB = 1 to larger values, the slope of the curves increases, which may be
characterized as synergism of ηAB with ηAR in affecting χ and which corresponds quali-
tatively to the third term on the right-hand side of Eq. (89a). All the plots discussed so
far have been computed for αA = αB = 0.3; calculations performed for symmetric sys-

FIG. 2
Indexes of nonrandomness gKL as functions of ηAR (at ηAR = ηBR). The curves are labelled with ηAB-
values. At ηAB = 1, gAA = gBB = gAB holds. a αA = αB = 0.3; θ2 = 0.5, i.e. ψA = ψB = 0.15. Broken
lines: gAA(= gBB), full lines: gAB. b αA = αB = 0.3; θ2 = 5/6 (also αA = 0.1; αB = 0.5; θ2 = 0.5), i.e.
ψA = 0.05; ψB = 0.25. Broken lines: gAA; dotted lines: gBB; full lines: gAB
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FIG. 1
Indexes of nonrandomness gKL as functions of ηAR

(at ηAR = ηBR). The curves are labelled with ηAB-
values. αA = αB = 0.3; θ2 = 0.5, i.e. ψA = ψB = 0.15.
Full lines: gAR(= gBR); broken lines: gRR

Phase Stability of Hydrogen-Bonded Polymer Mixtures 1851

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



FIG. 3
Flory–Huggins interaction parameter as a function of ηAR (at ηAR = ηBR). The curves are labelled
with ηAB-values. a αA = αB = 0.3; full lines: θ2 = 0.5, i.e., ψA = ψB = 0.15; broken lines: θ2 = 5/6,
i.e., ψA = 0.05; ψB = 0.25. At ηAB = 1 the full and broken lines coincide. b αA = 0.1; αB = 0.5; full
lines: θ2 = 1/6, i.e., ψA = ψB = 1/12; dotted lines: θ1 = 0.5, i.e., ψA = 0.05; ψB = 0.25
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Flory–Huggins interaction parameter as a
function of composition. The curves are la-
belled with ηAB-values. ηAR = ηBR = 0.5; full
lines: αA = αB = 0.3; broken lines: αA = 0.2; αB =
0.4; dotted lines: αA = 0.1; αB = 0.5
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The curves are labelled with ηAB-values. αA =
αB = 0.3; θ2 = 0.5
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tems with different α values confirm the expectation that the effects described grow
with increasing extent of the polar groups.

If θ2 > θ1 at αA = αB, the group B is in excess with respect to A; hence, more groups
B than A are left outside the A–B interaction (Fig. 2b). Then the index gBB depends
very little on ηAB and is larger than at θ1 = 0.5 (cf. Fig. 2a). Indexes gAA and gAB are
considerably smaller than in the symmetrical case, due to the unequal population of
groups A and B. In these circumstances the parameter χ is less negative and less de-
pendent on ηAB and ηAR (Fig. 3a, broken curves).

Now we turn our attention to systems with components which differ in their content
of polar groups in molecule. For instance, if we put αA = 0.1, αB = 0.5, then at θ2 = 0.5
we have the same group concentrations ψA = 0.05, ψB = 0.25 as in the case αA = αB = 0.3;
θ2 = 5/6, shown in Fig. 2b. As the indexes of nonrandomness depend on ψA and ψB only
at given η’s, we can use the latter figure again. This is not the case for the Flory–Huggins
parameter, which is determined not only by the concentrations of A and B groups in the
system but also by the distribution of these groups among the molecules of individual
components. Therefore, the χ-values are different for the two systems under consider-
ation; at the same ψA and ψB, the symmetrical system ( αA = αB; broken curves in Fig.
3a) displays lower χ-values than the strongly assymmetric system with αA << αB (Fig.
3b, dotted curves). In a mixture with αA = 0.1, αB = 0.5, an equal concentration of
groups A and B (ψA = ψB = 0.015) is attained at θ2 = 1/6 (full curves in Fig. 3b); then
the interaction parameter is considerably lower than at θ2 = 0.5. There is evident analogy of
Fig. 3a with Fig. 3b if the curves are distinguished according to whether ψA = ψB (full
lines) or not.

From the above discussion it is seen that the Flory–Huggins parameter must be com-
position-dependent. Symmetric systems, in which the interactions A–R and B–R are
mutually compensated, exhibit a minimum for θ2 = 0.5, the depth of which increases
with ηAB (Fig. 4, full curves). In dissymmetric systems (αA < αB), the minimum shifts
toward smaller values of θ2 until it disappears at a large disparity of the α-values. Then
χ increases monotonously with θ2 and the sign can be switched at some composition
(dotted curves in Fig. 4). The minimum discussed above should not be confused with
that of the dependence of ∆Gs

I on composition. The latter minimum occurs in all systems
with prevailing specific interaction A–B. With increasing ηAB, this minimum becomes
deeper and the corresponding composition approaches the value θ2 = αA/(αA + αB), at
which ψA = ψB.

So far we have assumed that both types of polar groups have the same interaction
with the nonpolar one (ηAR = ηBR). In Fig. 5 the parameter χsc is plotted as a function
of the difference ηAR – ηBR = ∆η assuming that ηAR + ηBR = 1. Then

ηAR = (1 + ∆η)/2     ηBR = (1 − ∆η)/2
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holds. Further it is assumed that αA = αB. In these circumstances the interaction parameter
shifts moderately toward less negative values with increasing the difference ηAR – ηBR;
the effect of this difference, however, is much smaller than that of the disparity in the
content of the polar groups A and B discussed above. Such a conclusion also follows
from Eqs (84) and (95), derived for some other cases; according to these equations the
difference ηAR – ηBR exerts no influence if αA = αB.

The authors are indebted to the Grant Agency of the Academy of Sciences of the Czech Republic for
financial support of this work (Grant No. A450102).
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